IS THE SUN LOSING ITS BRIGHTNESS?



Have you ever heard of GLOBAL DIMMING?

  

Not global warming.

 

Global dimming.

 

Come along to find out what it is.

 

Global dimming is the gradual reduction in the amount of global direct irradiance at the Earth's surface that was observed for several decades after the start of systematic measurements in the 1950s. The effect varies by location, but worldwide it has been estimated to be of the order of a 4% reduction over the three decades from 1960–1990. However, after discounting an anomaly caused by the eruption of Mount Pinatubo in 1991, a very slight reversal in the overall trend has been observed.[1]

Global dimming is thought to have been caused by an increase in particulates such as sulfate aerosols in the atmosphere due to human action.

It has interfered with the hydrological cycle by reducing evaporation and may have reduced rainfall in some areas. Global dimming also creates a cooling effect that may have partially counteracted the effect of greenhouse gases on global warming.

In basic terms, less sunlight is reaching the Earth because of visible air pollution, which is reflecting the light back into space.

CAUSES AND EFFECTS

 

It is thought that global dimming is probably due to the increased presence of aerosol particles in the atmosphere caused by human action.[2]

Aerosols and other particulates absorb solar energy and reflect sunlight back into space.

The pollutants can also become nuclei for cloud droplets. Water droplets in clouds coalesce around the particles.[3] Increased pollution causes more particulates and thereby creates clouds consisting of a greater number of smaller droplets (that is, the same amount of water is spread over more droplets). The smaller droplets make clouds more reflective, so that more incoming sunlight is reflected back into space and less reaches the Earth's surface.

This same effect also reflects radiation from below, trapping it in the lower atmosphere. In models, these smaller droplets also decrease rainfall.[4]

Clouds intercept both heat from the sun and heat radiated from the Earth. Their effects are complex and vary in time, location, and altitude. Usually during the daytime the interception of sunlight predominates, giving a cooling effect; however, at night the re-radiation of heat to the Earth slows the Earth's heat loss.

The incomplete combustion of fossil fuels (such as diesel) and wood releases black carbon into the air. Though black carbon, most of which is soot, is an extremely small component of air pollution at land surface levels, the phenomenon has a significant heating effect on the atmosphere at altitudes above two kilometers (6,562 ft). Also, it dims the surface of the ocean by absorbing solar radiation.[27]

 

BACKDROP

In the late-1960s, Mikhail Ivanovich Budyko worked with simple two-dimensional energy-balance climate models to investigate the reflectivity of ice.[5] He found that the ice-albedo feedback created a positive feedback loop in the Earth's climate system. The more snow and ice, the more solar radiation is reflected back into space and hence the colder Earth grows and the more it snows. Other studies found that pollution or a volcano eruption could provoke the onset of an ice age.[6][7]

In the mid-1980s, Atsumu Ohmura, a geography researcher at the Swiss Federal Institute of Technology, found that solar radiation striking the Earth's surface had declined by more than 10% over the three previous decades. His findings appeared to contradict global warming—the global temperature had been generally rising since the 70s. Less light reaching the earth seemed to mean that it should cool. Ohmura published his findings "Secular variation of global radiation in Europe" in 1989.[8] This was soon followed by others: Viivi Russak in 1990 "Trends of solar radiation, cloudiness and atmospheric transparency during recent decades in Estonia",[9] and Beate Liepert in 1994 "Solar radiation in Germany — Observed trends and an assessment of their causes".[10] Dimming has also been observed in sites all over the former Soviet Union.[11] Gerry Stanhill who studied these declines worldwide in many papers coined the term "global dimming".[12]

 The rate of dimming varies around the world but is on average estimated at around 2–3% per decade. The trend reversed in the early 1990s.
 
REVERSAL



Sun-blocking aerosols around the world steadily declined (red line) since the 1991 eruption of Mount Pinatubo, according to satellite estimates. Credit: Michael Mishchenko, NASA

Wild et al., using measurements over land, report brightening since 1990,[13][32][33] and Pinker et al.[34] found that slight dimming continued over land while brightening occurred over the ocean.[35] Hence, over the land surface, Wild et al. and Pinker et al. disagree. A 2007 NASA sponsored satellite-based study sheds light on the puzzling observations by other scientists that the amount of sunlight reaching Earth's surface had been steadily declining in recent decades, began to reverse around 1990. This switch from a "global dimming" trend to a "brightening" trend happened just as global aerosol levels started to decline.[31][36]

It is likely that at least some of this change, particularly over Europe, is due to decreases in airborne pollution. Most governments of developed nations have taken steps to reduce aerosols released into the atmosphere, which helps reduce global dimming.

Sulfate aerosols have declined significantly since 1970 with the Clean Air Act in the United States and similar policies in Europe. The Clean Air Act was strengthened in 1977 and 1990. According to the EPA, from 1970 to 2005, total emissions of  six principal air pollutants dropped by 53% in the US. In 1975, the masked effects of trapped greenhouse gases finally started to emerge and have dominated ever since.[37]

The Baseline Surface Radiation Network (BSRN) has been collecting surface measurements. BSRN was started in the early 1990s and updated the archives in this time. Analysis of recent data reveals that the surface of the planet has brightened by about 4% in the past decade. The brightening trend is corroborated by other data, including satellite analyses.
 
 
GLOBAL DIMMING AND GLOBAL WARMING
Some scientists now consider that the effects of global dimming have masked the effect of global warming to some extent and that resolving global dimming may therefore lead to increases in predictions of future temperature rise.[43] According to Beate Liepert, "We lived in a global warming plus a global dimming world and now we are taking out global dimming. So we end up with the global warming world, which will be much worse than we thought it will be, much hotter."[44] The magnitude of this masking effect is one of the central problems in climate change with significant implications for future climate changes and policy responses to global warming.[43]
Interactions between the two theories for climate modification have also been studied, as global warming and global dimming are neither mutually exclusive nor contradictory. In a paper published on March 8, 2005 in the American Geophysical Union's Geophysical Research Letters, a research team led by Anastasia Romanou of Columbia University's Department of Applied Physics and Mathematics, New York, also showed that the apparently opposing forces of global warming and global dimming can occur at the same time.[45] Global dimming interacts with global warming by blocking sunlight that would otherwise cause evaporation and the particulates bind to water droplets. Water vapor is the major greenhouse gas. On the other hand, global dimming is affected by evaporation and rain. Rain has the effect of clearing out polluted skies.
 
Source:
http://www.en.wikipedia.org/wiki/Global_dimming
 
 

Comments